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Abstract
We investigate the competition between barrier slowing down and proliferation
induced superdiffusion in a model of population dynamics in a random force
field. Numerical results in d = 1 suggest that a new intermediate diffusion
behaviour appears. We introduce the idea of proliferation assisted barrier
crossing and give a Flory-like argument to understand qualitatively this non-
trivial diffusive behaviour. A renormalization group analysis close to the critical
dimension dc = 2 confirms that the random force fixed point is unstable and
flows towards an uncontrolled strong coupling regime.

PACS numbers: 0540, 0250, 0570L

The presence of disorder often radically changes the statistical properties of random walks. For
example, random walks in a random potential are trapped in deep potential wells: this may lead
to subdiffusion, i.e. the fact that the typical distance travelled by the walkers increases at a slower
rate than the square-root of time [1]. A much studied model exhibiting this type of behaviour
is the Sinai model, where particles diffuse in a random force field in one dimension [2–4]. In
this case, the energy barriers typically grow as the square root of the distance, which leads to
a logarithmically slow progression of the random walkers. There are also several mechanisms
that lead to superdiffusion. For example, if the random force field is rotational, the random
walkers can be convected far away by long streamlines [1]. Another interesting mechanism of
superdiffusion is random proliferation: suppose that each random walker can either die or give
birth to new random walkers at a rate which is random, both in time and space. There is in this
case a possibility for an ‘outlier’ random walker, that has by chance travelled a distance much
greater than the square-root of time, to have been particularly prolific: he and his siblings then
represent an appreciable fraction of the whole population, leading to a motion of the centre
of mass faster than normal diffusion. This mechanism has been widely studied (although not
explicitly discussed as such) in the context of directed polymers (DP) in random media or
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equivalently the Kardar–Parisi–Zhang (KPZ) model of surface growth [5]. The aim of this
letter is to investigate the case where both these mechanisms are simultaneously present. The
motivations for such a mixed model are numerous. In the context of population dynamics
(for example, bacteria on a random substrate), similar models have recently been investigated,
with quite interesting results [6]. One can also give an economic interpretation of population
dynamics, where the local density of random walkers is the wealth of a given individual.
Biased diffusion represents trading between individuals, whereas the random growth term is
the result of speculation [7]. One can argue that generically, this type of model leads to a Pareto
(power-law) tail in the distribution of wealth [7]. Finally, from a theoretical point of view,
this mixed model leads to the interesting possibility of new behaviour, intermediate between
superdiffusion and subdiffusion.

More precisely, we study here the following equation for the local population density
P(�x, t) in d dimensions (in the Stratonovich sense)

∂P (�x, t)
∂t

= ν0
P(�x, t) − �∇( �F(�x)P ) + η(�x, t)P (�x, t) (1)

where ν0 is the bare diffusion constant, �F(�x) a space dependent static Gaussian random force
such that4 〈Fµ(�x)Fν(�x ′)〉F = 2σ 2

F δµ,νδ
d(�x − �x ′), and η(�x, t) a Gaussian random growth rate,

depending both on space and time, with 〈η(�x, t)η(�x ′, t ′)〉η = 2σ 2
η δ(t − t ′)δd(�x − �x ′). The

initial condition is chosen to be P(�x, t = 0) = δd(�x). Due to the last term, the total population
Z(t) = ∫

d�x P (�x, t) is not conserved. The quantities of interest, which describe how the
population spreads in time are, for example, the average centre of mass motion,

x2
cm(t) =

〈(
1

Z

∫
�xP (�x, t) d�x

)2
〉
F,η

(2)

or the average ‘width’ of the diffusing packet 〈
2〉F,η:


2(t) = 1

Z

∫
�x2P(�x, t) d�x −

(
1

Z

∫
�xP (�x, t) d�x

)2

. (3)

(Other moments can, however, also be studied: see later.) An alternative description is in terms
of the free-energy h(�x, t) = logP(�x, t), which obeys the equation

∂h(�x, t)
∂t

= ν0
h(�x, t) + λ( �∇h)2 − �F(�x) · �∇h − �∇ · �F(�x) + η(�x, t) (4)

with λ = ν0. When �F ≡ 0, these equations represent the well known KPZ (or directed
polymer) problem, whereas for η ≡ 0, one recovers the problem of a random walk in a random
environment. Both problems can be approached using a perturbative renormalization group;
interestingly, the critical dimension for both problems is dc = 2. For the random drift problem,
one finds that the coupling constant gF = σ 2

F /(2π)ν2
0 flows towards a non-trivial fixed point

of order ε in dimensions d = 2 − ε [1, 8, 9]. This in turn leads to subdiffusive behaviour:
xcm(t) grows as tνF with νF = (1− ε2)/2 < 1/2. For the KPZ problem, the coupling constant
is gη = σ 2

η λ
2/(2π)ν3

0 ; the Gaussian fixed point gη = 0 is again unstable for d < 2, but there
is no accessible fixed point at one loop for d > 3/2 [10]. The exponent ν, therefore, cannot
be computed but is expected (and found numerically) to be greater than 1/2: in population
dynamics language, the possibility of far-away proliferation leads to superdiffusion. We have
performed an RG analysis in the mixed case where both gF and gη are non-zero. This can be
done using a field theoretical representation [10] representation of equation (4), which allows

4 Note that for this choice of correlator, the force is the derivative of a random potential only in d = 1.
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Figure 1. One-loop RG flow in the gη, gF plane. As soon as gη is non-zero, it flows towards the
strong coupling region. Our numerical simulations suggest that an attractive ‘mixed’ fixed point
appears in this region, differing from the KPZ fixed point.

one to generate the perturbation expansion in gF and gη. Performing calculations along the
lines of [8–10], we find that the two β functions are given by

dgη

d�
= εgη + 2gηgF +

g2
η

4
dgF

d�
= εgF − εgηgF

4
− g2

F

(5)

where � is the logarithm of the running length scale. The resulting flow is represented in
figure 1. The subdiffusive random force fixed point gη = 0, gF = ε is therefore unstable in
the presence of a small ‘proliferation’ term gη. Unfortunately, at one loop, gη flows towards
the strong coupling region, as is the case in the standard KPZ case gF = 0. One can, however,
argue, using a path integral representation (see later), that the random force term is a relevant
perturbation near the strong KPZ fixed point. Therefore, we expect the mixed problem gF 
= 0,
gη 
= 0 to be described by a new strong coupling fixed point. Note that the present problem
is similar to the KPZ problem with columnar noise [11], although with a special kind of
correlations of the disorder.

In order to obtain some information about this strong coupling behaviour, we have
performed some numerical simulations in one dimension, where both the fixed points
corresponding to Sinai subdiffusion and to DP/KPZ superdiffusion are well understood. We
have found results that suggest the existence of an attractive fixed point, characterized by a
new non-trivial diffusive behaviour (intermediate between the Sinai and DP/KPZ behaviour).
We have numerically evolved a space and time discretized version of equation (1), and
have worked with logP to avoid precision problems. Starting from a localized packet
P(x = ia, t = 0) = δi,0, we have found that as soon as both coupling constants, g0

F and
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Figure 2. Behaviour of the average centre of mass xcm(t) and of the average position of the
maximum of the packet xmax(t) (i.e. the point where P(x, t) is maximum), as a function of time,
for ση/σF = 0.125. The best linear fits are shown, and lead to an estimate for ν∗ slightly smaller
than 1/2. Inset: value of ν∗ (determined from the behaviour of xcm(t)) as a function of the Hurst
exponent of the potential H , compared with the Flory prediction.

g0
η , are non-zero, the exponent ν describing the diffusion of the centre of mass xcm(t) at large

times is found to be close to the value ν∗ = 1/2 (see figure 2). The position xmax(t) of
the maximum of P(x, t) behaves very similarly. The ratio g0

F /g
0
η affects only the short time

transient behaviour, which is either Sinai-like or DP/KPZ-like, as shown in figure 3. In the
RG language, this suggests that a non-trivial attractive fixed point, g∗

F , g
∗
η , appears. This is

compatible with the flow diagram of figure 1, although this new fixed point is out of reach at
the one-loop level. Although the value of ν∗ = 1/2 corresponds to free-diffusion, the motion
of the packet for a given environment is far from a simple diffusion, as the study of the width 


of the packet shows. We have found numerically that 〈
q〉F,η behaves as tqζq with ζ1 � 0.24,
ζ2 � 0.34 and ζ4 � 0.38. This non-trivial behaviour is actually present for both the Sinai
problem and the DP/KPZ problem. This comes from the fact that, for both problems, the
effective free energy h(x, t) = logP(x, t) behaves as a random walk in x space. This is trivial
for the Sinai problem, since the potential is, indeed, constructed as the sum of local random
forces. For the DP/KPZ problem, this is far less trivial and results from the fact that one can
obtain exactly the stationary distribution of h(x, t) in one dimension, which turns out to be the
same as for the linear case λ = 0, i.e. again a random walk in x space [5]. It is well known that
for a random walk potential, the probability that two nearly degenerate minima are separated
by a distance 
 falls off as 
−3/2 for large 
. The qth moment of 
 is therefore dominated
by extreme events as soon as q > 1/2. Physically, this means that for most realizations of
the disorder, the width 
 of the packet is small [12, 13], except in rare situations where the
packet is divided into two subpackets very distant from one another. The natural cut-off for 

is of the order of xcm(t) itself. Therefore one obtains, for q > 1/2, 〈
q(t)〉 ∝ [xcm(t)]q−1/2.
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Figure 3. Behaviour of the average centre of mass xcm(t) for different values of σF . This curve
shows that for large σF , the short time behaviour is Sinai-like, crossing over to mixed behaviour at
long times. The value of xcm(t) has been rescaled by σ

3/4
F to obtain a reasonable data collapse at

long times.

For the Sinai problem, using xcm(t) ∝ log2(t), this leads to 〈
2(t)〉F ∝ log3(t), whereas for
the DP/KPZ case, using xcm(t) ∝ t2/3, one finds 〈
2(t)〉η ∝ t : both these results are actually
exact, as has been shown in [4,13,14]. Assuming that the effective potential in the mixed case
is again a random walk in x space, and using ν∗ � 1/2, we obtain ζq = (2q − 1)/4q, i.e.
ζ1 � 0.25, ζ2 � 0.375 and ζ4 � 0.4375, in reasonable agreement with our numerical values5.
In order to understand the value of ν∗ � 1/2, one needs to develop a consistent picture of
the competition between the slowing down induced by the ever-growing Sinai barriers and
the speeding up of the population spreading allowed by the multiplicative growth term η.
Before addressing the full Sinai + KPZ problem, we first consider the simpler case of a unique
barrier of height U0, which develops on scale L. For definiteness, we have solved numerically
equation (1) on the interval [0, L] with F(x) = −U0/L sin(4πx/L). The initial condition is
localized in the first well, and the crossing time τ is defined as the average time after which
the relative weight of the population in the second well is one-half of that in the first well. For
η ≡ 0, one finds the classical Arrhenius law: log τ = U0/ν0. When η 
= 0, the behaviour of τ
as a function of U0 for different values of L is shown in figure 4. The result can be expressed
as: τ ∝ L3/2f (U0/

√
L), with f (y → 0) = 1 and f (y → ∞) ∝ yb. This scaling of τ with

L can easily be understood. In the limit U0 → 0, the time for the particles to reach a distance
L is given by the DP/KPZ scaling, i.e. L ∝ τ 2/3.

The influence of the external potential U0 becomes substantial when it becomes of the
order of the effective KPZ potential h, which, as discussed above, grows as

√
L. Numerically,

the exponent b is found to be very close to b = 5/3. Therefore, the exponential increase of

5 One actually observes a similar bias towards values smaller than the theoretical one for the KPZ equation. In this
case, one expects ζq = 2/3 − 1/3q: see [13, 14].
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Figure 4. Average barrier crossing time 〈τ 〉, rescaled by L3/2, as a function of the barrier height
U0 rescaled by

√
L, for different sizes L, and in log–log coordinates. The slope 5/3 is shown for

comparison. The power law increase of 〈τ 〉 as a function of U0 has to be compared to the usual
exponential (activated) dependence.

the crossing time with the barrier height is replaced by a power-law increase in the presence of
the random growth term η. One can call this effect proliferation assisted barrier crossing: the
probability that a particle reaches the top of the barrier x∗ by pure diffusion is exp(−U0/ν0),
but, due to the random growth term, this probability is multiplied by a certain proliferation
‘gain’ factor6 exp G(x∗, t). This factor can be estimated using a path integral representation
of the population density

P(x, t) =
∫ (x,t)

(0,0)
dC exp

(
−

∫ t

0
dt ′

[
1

2ν0

(
∂t ′x(t

′) − F(x(t ′))
)2 − η(x(t ′), t ′)

])
(6)

where F(x) has the previously defined sinusoidal shape. The force term gives rise to the
detrimental contribution exp(−U0/ν0), while the proliferation term originates the gain factor
G. If the path C leading from the initial point x0 to x∗ was unique, one would simply have
G(x∗, t) = ∫

dt ′ η(xC(t ′), t ′), which typically behaves as ση

√
t . In fact, many paths contribute

to G(x∗, t). This leads to a kind of pre-averaging effect of the random growth term η over the
width w(t) of the paths C. Therefore7

G(x∗, t) ∼ ση

(∫ t

0

dt ′

w(t ′)d

)1/2

. (7)

6 Note that this proliferation assisted barrier crossing can only take place if the population density P(x, t) can take
exponentially small values. This would not be the case, for example, if one simulates equation (1) using a large but
finite number of particles.
7 A similar argument can be made to show that in the completely random problem the static random force term is a
relevant perturbation in the vicinity of the KPZ fixed point: in the path integral representation (where F(x) is now
random) one can show that the typical contribution of this static random force to the free energy is always larger (at
large length scales) than the typical fluctuations of the KPZ free energy.
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Since most paths leading to x∗ spend their time in the thermally accessible region of the
well, one can estimate w(t ′) as w = L/

√
U0. The proliferation factor then compensates the

barrier when τ ∝ U
3/2
0 (for d = 1). This simple argument, therefore, leads to b = 3/2, not

very far from the numerical value b � 5/3. Actually, one can apply this argument to the
unconfined case U0 = 0, where the detrimental factor is now the entropy of the random walk
exp(−x∗2/t). Using self-consistently w(t ′) = x∗(t ′), the compensation argument now leads
to x∗ ∝ t3/(4+d), which is precisely the Flory result for the DP/KPZ problem. This Flory value
can be obtained using a variational method, either with replicas [15] or without replicas [16].
In spirit, equation (7) is actually very close to the latter calculation. The value b = 3/2 can,
therefore, be seen as a Flory value for this problem.

Returning now to the Sinai case, where the barrier height grows as σF

√
x∗, the self-

consistent compensation argument now leads to σF

√
x∗ ∼ ση

√
t/x∗, or x∗ ∼ (ση/σF )

√
t .

The
√
t behaviour is close to the numerical results shown in figure 2. However, as shown in

figure 3, the dependence of xcm on σF is found to be weaker than the 1/σF behaviour predicted
by this simple argument, and closer to 1/σ 3/4

F . We have also investigated numerically the case
where the force derives from a fractional Brownian motion with a Hurst exponent H . The case
H = 1/2 is the standard Sinai random walk potential considered above. An extension of the
proliferation argument to this case predicts that ν∗ = 1/(1 + 2H) for H > 1/4, reverting to
the DP/KPZ value ν∗ = 2/3 for smaller values of H (i.e. when the potential is not ‘confining’
enough). As shown in figure 2, our numerical values for ν∗ agree quite well with this prediction:
for example ν∗(H = 3/4) � 0.37 and ν∗(H = 1/4) � 0.65.

In summary, we have investigated the competition between barrier slowing down and
proliferation induced superdiffusion in a model of population dynamics in a random force
field. The one-loop RG analysis close to the critical dimension dc = 2 predicts that the
subdiffusive fixed point is unstable against ‘proliferation’ and flows to strong coupling. Our
numerical results in d = 1 actually suggest that both the Sinai and KPZ fixed points are
unstable and flow towards a new stable mixed fixed point. We have given a heuristic Flory-like
argument, which allows us to understand qualitatively the diffusive behaviour at this mixed
fixed point, and also our results on proliferation assisted barrier crossing. This work can be
extended in various directions: for example a two-loop RG calculation would be interesting.
One could also study the effect of nonlinear terms in the population equation, such as −P 2 or
�∇ · (P �∇P), and the role of a non-zero external force 〈F(x)〉. It would be worth performing
some numerical simulations of the barrier crossing problem and of the mixed model in d = 2.

We thank M Bergère, A Cavagna, C de Dominicis, T Garel, J M Luck, M Munõz and K Wiese
for useful discussions.
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